Background
In electrical engineering, a protective relay is a relay device designed to trip a circuit breaker when a fault is detected. The first protective relays were electromagnetic devices, relying on coils operating on moving parts to provide detection of abnormal operating conditions such as over-current, over-voltage, reverse power flow, over-frequency, and under-frequency.
Microprocessor-based digital protection relays now emulate the original devices, as well as providing types of protection and supervision impractical with electromechanical relays. Electromechanical relays provide only rudimentary indications of involved phase and zone targets.
In many cases a single microprocessor relay provides functions that would take two or more electromechanical devices. By combining several functions in one case, numerical relays also save capital cost and maintenance cost over electromechanical relays.
Electromechanical protective relays operate by either magnetic attraction, or magnetic induction.
Types of Relays
Types of protection relays are mainly based on their characteristic, logic, on actuating parameter and operation mechanism.
Based on operation mechanism protection relay can be categorized as electromagnetic relay, static relay and mechanical relay. Actually relay is nothing but a combination of one or more open or closed contacts. These all or some specific contacts the relay change their state when actuating parameters are applied to the relay. That means open contacts become closed and closed contacts become open. In electromagnetic relay these closing and opening of relay contacts are done by electromagnetic action of a solenoid.
In mechanical relay these closing and opening of relay contacts are done by mechanical displacement of different gear level system.
In static relay it is mainly done by semiconductor switches like thyristor. In digital relay on and off state can be referred as 1 and 0 state.